Face normalization using multi-scale cortical keypoints

نویسندگان

  • João Cunha
  • João Rodrigues
چکیده

Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. Models of visual perception are based on image representations in cortical area V1 and beyond, which contain many cell layers for feature extractions. Simple, complex and end-stopped cells tuned to different spatial frequencies (scales) and/or orientations provide input for line, edge and keypoint detection. This yields a rich, multi-scale object representation that can be stored in memory in order to identify objects. The multi-scale, keypoint-based saliency maps for Focus-of-Attention can be explored to obtain face detection and normalization, after which face recognition can be achieved using the line/edge representation. In this paper, we focus only on face normalization, showing that multi-scale keypoints can be used to construct canonical representations of faces in memory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-scale Cortical Keypoint Representation for Attention and Object Detection

Keypoints (junctions) provide important information for focus-of-attention (FoA) and object categorization/recognition. In this paper we analyze the multi-scale keypoint representation, obtained by applying a linear and quasi-continuous scaling to an optimized model of cortical end-stopped cells, in order to study its importance and possibilities for developing a visual, cortical architecture. ...

متن کامل

Multi-scale Keypoints in V1 and Face Detection

End-stopped cells in cortical area V1, which combine outputs of complex cells tuned to different orientations, serve to detect line and edge crossings (junctions) and points with a large curvature. In this paper we study the importance of the multi-scale keypoint representation, i.e. retinotopic keypoint maps which are tuned to different spatial frequencies (scale or Level-of-Detail). We show t...

متن کامل

Multi-scale cortical keypoints for realtime hand tracking and gesture recognition

Human-robot interaction is an interdisciplinary research area which aims at integrating human factors, cognitive psychology and robot technology. The ultimate goal is the development of social robots. These robots are expected to work in human environments, and to understand behavior of persons through gestures and body movements. In this paper we present a biological and realtime framework for...

متن کامل

Multi-scale keypoints in V1 and beyond: object segregation, scale selection, saliency maps and face detection.

End-stopped cells in cortical area V1, which combine outputs of complex cells tuned to different orientations, serve to detect line and edge crossings, singularities and points with large curvature. These cells can be used to construct retinotopic keypoint maps at different spatial scales (level-of-detail). The importance of the multi-scale keypoint representation is studied in this paper. It i...

متن کامل

Multiscale keypoint hierarchy for Focus-of-Attention and object detection

Hypercolumns in area V1 contain frequencyand orientation-selective simple and complex cells for line (bar) and edge coding, plus end-stopped cells for keypoint (vertex) detection. A single-scale (single-frequency) mathematical model of single and double end-stopped cells on the basis of Gabor filter responses was developed by Heitger et al. (1992 Vision Research 32 963-981). We developed an imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007